Obviously when mtDNA is damaged in neurons that can have various effects depending on the damage. A key point, however, is that if there is a process which is damaging mtDNA then if that continues then the mtDNA will get further damaged. As some relatively minor damage appears to be caused by the replication of mtDNA itself then it is like there is a very slow moving footpath moving towards cell failure. Hence when looking at how to rectify this then certain points need to be made. When mtDNA is damaged this will not immediately affect the structure of the cell. What it does is to change how the cell produces or fails to produce proteins in the future. Hence if the process of mtDNA damage stops, the cell is unlikely to be in its stable state and can be expected to deteriorate in function to a point at which homeostasis is achieved. It is hard, but possible, to improve mtDNA. However, that will not immediately improve the function of the cell and it may need a stimulus to rege...
Transitions, Transversions and Deletions in mitochondrial DNA and their relevance to Parkinsons, ALS/MND and Aging.
I aim to write this blog so that people don't need a detailed understanding of genetics to read it. I assume people know that genetics involves DNA being used to produce proteins. DNA is comprised of four nucleotides. Two of these are purines Adenine (A) and Guanine (G). The other two are pyrimidines Thymine (T) and Cytosine (C). They pair in two pairs A to T and G to C. Each pair is called a base pair. To produce a protein they are copied to mRNA (messenger RNA) which is then used by the ribosome to create proteins. There is DNA in the nucleus of the cell and there is also DNA in the mitochondria (the little chemical factories that generate ATP and other molecules used by the cell). There is a three base pair code (identifying which amino acid to use) used to convert DNA into protein (via mRNA). Interestingly the code is slightly different in the nucleus/ribosome to the mitochondria. So far so good. DNA can be mutated where one nucleotide for some reason or other is ch...